Beyond the Maxwell limit: thermal conduction in nanofluids with percolating fluid structures.

نویسندگان

  • Jacob Eapen
  • Ju Li
  • Sidney Yip
چکیده

In a well-dispersed nanofluid with strong cluster-fluid attraction, thermal conduction paths can arise through percolating amorphouslike interfacial structures. This results in a thermal conductivity enhancement beyond the Maxwell limit of 3phi, with phi being the nanoparticle volume fraction. Our findings from nonequilibrium molecular dynamics simulations, which are amenable to experimental verification, can provide a theoretical basis for the development of future nanofluids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selection of nanofluid for heat transfer applications from existing models of thermal conductivity

Nanofluids are gaining much importance over the past decade due to their enhanced thermal conductivity, specific heat, cooling capacity, electrical conductivities. Novel properties of nanofluids are yet to be explored to the highest potential applications. One of the prominent applications of nanofluids is in thermal conduction. The presence of nanoparticle in a fluid can enhance the thermal co...

متن کامل

Selection of nanofluid for heat transfer applications from existing models of thermal conductivity

Nanofluids are gaining much importance over the past decade due to their enhanced thermal conductivity, specific heat, cooling capacity, electrical conductivities. Novel properties of nanofluids are yet to be explored to the highest potential applications. One of the prominent applications of nanofluids is in thermal conduction. The presence of nanoparticle in a fluid can enhance the thermal co...

متن کامل

Thermal Conductivity of Cu2O-TiO2 Composite -Nanofluid Based on Maxwell model

 Nanofluids are colloidal suspension of nanoparticles in a base fluid and have superior thermal properties in comparison to their base fluids. Novel properties of nanofluids are yet to be explored to the highest potential. Currently extensive investigation has been done on thermal conductivity of metallic and oxide...

متن کامل

Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer

The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...

متن کامل

Nanofluids Research: Key Issues

Nanofluids are a new class of fluids engineered by dispersing nanometer-size structures (particles, fibers, tubes, droplets) in base fluids. The very essence of nanofluids research and development is to enhance fluid macroscopic and megascale properties such as thermal conductivity through manipulating microscopic physics (structures, properties and activities). Therefore, the success of nanofl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 76 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2007